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Abstract

In the computer vision field, it is very important to incorporate with computational uncertainty, 
which could make AI/machine learning technologies more reliable. Deep neural networks 
perform the state-of-art on various computer vision tasks (e.g. image classification, semantic 
segmentation, object detection), while there are many drawbacks behind this, such as  long 
trainning time, overfitting and uninterpretable. To solve these issues, Gaussian processes (GPs) 
provide the uncertainty estimation and perform well only with few-shot data. In this report, I 
explore hw GPs could be applied in image classification task and how to incorporate with 
uncertainty. The results show that the GPs classifier is reliable when I set an acceptable 
uncertainty threhold. 

1. Introduction  

Deep neural networks (DNNs) are widely used in computer vision fileds, becaues of they have 
many advantages, such as high precision, powerful feature extraction and real-time infernecing.  
Recently, many papers adopt DNNs to solve the few-shot image classification task, e.g. they use 
data augmentation to increase the number of samples. In addition, transfer learning, meta 
learning and bayesain learning are also used in few-shot image classification task. In practice, 
DNNs have the following drawbacks.

1. DNNs need plenty of labeled data for training, high qualiy dataset collection and labelling 
is expensive and time-consuming. 

2. Trainning a DNN requires many computation resources and plenty of time. 
3. DNNs have a powerful fitting performance, while often leads to overfitting on training 

data. 



4. Due to the complexity of deep neural networks, it is hard to explain the prediction of 
DNNs.

To solve above issues, I apply gaussian process in the few-shot image classification tasks. The 
advantages of GPs are following:

1. Flexibility: GPs could be applied in various tasks with different data types. It could be used 
in regression, classification, time serise analysis, etc.

2. Uncertainty approximation: GPs provides the uncertainty approximation for predicted 
results. It gives related probabilistic information about prediction, which helps use evalute 
the reliabilty and risks of models.

3. Well performance on few-shot learning, GPs has a powerful prior assumption about data, 
which makes it perform well on few data.

But note that the property of GPs (continues space) leads to inferior accuracy, especially doing 
multi-calsses classification task.

The GPs observes variables in a continuous space. When observed variable space of GPs is 
within the realm of real numbers, we can conduct regression to make predictions. This is so 
called Gaussian Process Regression (GPR). Conversely, when the observation variable space is 
within the realm of integers (where observation points are discrete), we can conduct 
classification. And it is called Gaussian Process Classification (GPC). Thus, we can apply the 
method of GPC to few-shot image classification task. In this way, we aviod a large architecture 
and data requirements typically associated with DNNs, while still achieving considerable 
classification results.

In this report, I will introduce the mathematical background of GPs and how it designed for 
classification task. And I will show related experiments on fashion-mnist and cifar-10 dataset, 
then incooperate with uncertainty to make prediction reliable. Finally, I will eplain the results 
and give an conclusion.

2. Gaussian process classifier  

The applications of GPs include regression and classification. It's called regression problem 
when both input and output data are continuous, while prediction with finite set of discrete 
output variables is known as classification. In fact, Gaussian Process Classification (GPC) is an 
extension of Gaussian Process regression (GPR). From the output of GPR, we can use a link 
function to get a corresponding label, based on an appropriate threshold value, different category 
results can be output.



We assume dataset D contains n obeserved variables , where 
denotes the D-dimensional input vectors (covariates), and  represents the output vectors 
(dependent variables). The column vector inputs for all n cases can be combined into a design 
matrix  of size . We aim to construct a model  based on the data from the 
training set, where  represents the mapping relationship between the covariates and the 
dependent variable, which is the latent variable function. This model can then be applied to a 
new dataset  for testing purposes. Given , we can use the model to predict the 
corresponding output . In more realistic modeling scenarios, it is common to encounter noise 
or uncertainty, making it challenging to obtain the exact function  itself.

Assume that  follows GPs, we can express it as  , then we get

Where  is mean function,  is kernel function. Then we get joint distribution of 
and .

Then we conduct the conditional distribution, which is the key prediction function of the GPR.

But in this case, we can only get continuous predictions not labels. In a task of binary 
classification, we place a GPs prior on function  and use a function  to compress the results 
within the range of .

Next, we proceed with Bayesian inference by computing the distribution of the latent variable 
function applied to the test set data.

Where  is the posterior distribution of the latent variable function, 
which can be used to generate a probability prediction based on the dataset.



In the task of regression, the  prediction can be directly calculated. However, in the classification 
problems, the Non-Gaussian likelihood makes the calculation more challenging. It is very hard 
to deal with posterior distribution and probability prediction. Thus, we need some 
approximation technologies like Laplace approximation and Variational Inference.

In this report, I use Laplace approximation algorithm for GPC. We can use Laplace algorithm to 
approximate posterior  with gaussian function . Apply a 2nd Taylor 
expansion on  maximum posterior of , we can get gaussian approximation,

Where ,   is the Hessian matrix of the 
negative log of posterior at that point.

Based on the Bayesian theorem, we can get the marginal likelihood function toward 

Then differentiating the equation 9, we can get,

Where  is a diagonal matrix. After finding the maximum the posterior of 
, we can specify the Laplace approximation of the posterior as a Gaussian function. The mean 

and covariance matrix are given by the negative inverse Hessian of .

3. Few-shot image classification  

In this section, I compare GPC on the image classification benchmarks of Fashion-MNIST and 
CIFAR-10. GPC implementation is from Python library scikit-learn. Currently, the 
implementation is restricted to using the logistic link function. For multi-class classification, 
several binary one-versus rest classifiers are fitted, i.e., this function thus does not implement a 
true multi-class Lapace approximation. Due to that issue, I both try binary and multi-class  
image classification on two dataset, and compare the precisions between two tasks. 

Note that, in this task, I use kernel , and the kernel's hyper parameters are 
optimized during fitting.



Figure 1. Binary classification results on 28 training images with GPC in Fashion

3.1 Data preprocess  

3.1.1 Fashion MNIST  

The Fashion-MNIST dataset consists of a collection of grayscale images depicting various 
clothing and accessory items. It comprises 10 different categories, each containing 6,000 images, 
resulting in a total of 60,000 training images and 10,000 test images. Each image has a resolution 
of  pixels. 

In this task, I just simply normalize the images within the range of  by deviding 255 and 
convert the 2D matrix into an 1D vector with size of 784.

3.1.2 Cifar-10  

The CIFAR-10 dataset consists of 60,000 color images, with each image having a resolution of 
 pixels. These images are divided into 10 different classes, each representing a 

distinct object category, including airplanes, automobiles, birds, etc. Each class contains 6,000 
images.

In this task, I just simply normalize the images within the range of  by deviding 255 and 
convert the RGB image  into an 1D vector with size of 3072.

3.2 Binary image classification  

I select 2 labels randomly for this task. After trying PCA, I found results are not improved a lot, 
to simply the preprocess, I directly use all feature variables. In this example, label 1 and 4 are 
randomly selected in Fashion MNIST dataset, and I filter selected data from all dataset which 
have label 1 or 4. Then I randomly select 40 images from the filtered dataset. Finally, 40 images 
are preprocessed and randomly splitted into train data with 28 images and test data with 12 
images, respectively.  

This figure shows the test results on test data in the Fashion MNIST  and Cifar-10 dataset.



MNIST dataset 

Figure 2. Binary classification results on 28 training images with GPC in CIFAR-10

 



dataset 

Number of training
images

Fashion MNIST (label 1 and
4)

CIFAR-10 (label 1 and
2)

28 0.947 0.6
56 0.980 0.65
84 0.987 0.63
112 0.980 0.66
140 0.986 0.652

To compare with different number of training images, start from 28 training images, I gradually 
increase the number of training images up to 140 images. The following table shows the 
prediction accuracy of the model with different number of training images on all dataset with 
corresponding labels.

From above table, we can find that GPC performs well on Fashion MNIST dataset, while terrible 
on CIFAR-10 dataset. The reason is that I simply convert RGB images into 1D vector. In addition, 
GPs has the issue of curse of dimensionality, and I did not apply feature dimensionality 
reduction in the data preprocess. Because we are focusing on how to incorporate uncertainty, 
next, GPC will mainly performs on Fashion MNIST dataset.



Figure 3. 4-class classification results on 112 training images with GPC in Fashion
MNIST dataset 

Figure 4. 4-class confusion matrix on 112 training images with GPC in Fashion MNIST

3.3 Multi-class image classification  

The following figure shows the results with 112 training images on 4 classes.

 



dataset 

Num: training
imgs

Classes: 1,
2

Classes: 1, 2,
3

Classes: 1, 2, 3,
4

Classes: 1, 2, 3, 4,
5

112 0.984 0.95 0.846 0.80
140 0.988 0.952 0.844 0.83
168 0.985 0.953 0.851 0.83
196 0.986 0.955 0.865 0.86
224 0.983 0.955 0.864 0.867

For multi-class image classification, I gradully increase the number of training images from 84 to 
196 . Meanwhile, I increase the number of classes from 2 to 4. The following table shows the 
prediction accuracy of the model with different number of training images and labels on all 
dataset with corresponding labels.

From above table, we can find that the task becomes harder while we have more classes, because 
GPC perform more binary classifcation which makes prediction accuracy lower. Meanwhile, if 
we increase the number of training images, the results are better, while it needs more 
computation resources and more time-consuming. 



Figure 5. 4-class classification results on dataset with labels have never seen with GPC
in Fashion MNIST dataset 

3.4 Incorporate with uncertainty  

To incorporate with uncertainty, we can define the uncertainty  by variance of classification 
probability distribution.  When  is low, which means a uniform distribution of the prediction. 
Assume we have n sample, for ith samples,   can be calculated:

Where  is the uncertainty of ith sample's prediction,  V is the set of all variances in the test 
dataset. k is a scale factor, which is set to be 10 based experiments.

To visualize the results, We use the example in section 2, we train GPC on 112 images with 4 
classes, and the prediction accuracy is 0.834 on all filtered dataset with label 1, 2, 3 and 4. 

In this experiment, we intentionally introduced some datasets that the model has never seen 
before, including labels that have not been trained on. 



Figure 6. Corresponding uncertainties of prediction 



Figure 7. Prediction accuracy vs. Threshold of Uncertainty

From figure 5 and 6, when uncertainty of predition is very high, the prediction normally is 
wrong, while it is very low uncertainty, the prediction is normally correct (but sometimes it 
might be wrong, see failur cases). 

Thus, a strategy is come up, if we setup a threshold of uncertainty manully, we can control the 
prediction accuracy. When uncertainty prediction is lower than threshold, we accept the results. 
Otherwise, we refuse the results. Figure 7 shows prediction vs. threshold of uncertainty.



3.5 Failure cases  

From figure 5 and 5, we find sample 0 has a very low prediction uncertainty, while the prediction 
is still wrong, this might happen when we choose a bad scale factor. 

4. Conclusion  

In this homework, I evaluated the performance of Gaussian Process Classification (GPC) for 
image classification tasks using the Fashion-MNIST and CIFAR-10 datasets, with a particular 
emphasis on integrating uncertainty into the classification process. The results revealed a strong 
performance of GPC in binary and multi-class classification contexts, especially with the 
Fashion-MNIST data.

In the binary classification task, GPC showed excellent performance on the Fashion-MNIST 
dataset but struggled with the CIFAR-10 dataset due to a simplistic preprocessing approach and 
high data dimensionality. This led me to focus subsequent investigations solely on the Fashion-
MNIST dataset. In multi-class classification, the accuracy of the GPC model decreased as the 
number of classes increased. However, enhancing the number of training images improved 



accuracy, albeit at the cost of additional computational resources.

Besides, the introduction of uncertainty into the classification process allowed for a more 
understanding of the model's predictions. By calculating the variance of the classification 
probability distribution, I assigned an uncertainty value to each prediction. Predictions with high 
uncertainty tended to be incorrect, prompting me to establish an uncertainty threshold. 
Predictions below this threshold were accepted, effectively improving overall prediction 
accuracy. Despite these promising results, the model had certain failure cases where low 
uncertainty corresponded to incorrect predictions. This could be attributed to an inappropriate 
choice of scale factor in the uncertainty calculations.

In conclusion, GPC is a powerful tool for introducing uncertainty, which can be widely applied 
in real-world situations that require reliable and stable output.  For example, in autonomous 
driving or medical image analysis fields, predictions with high uncertainty can be flagged for 
additional review or analysis, thereby enhancing the safety and reliability of these computer 
vision systems. 
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